Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell Rep Med ; 3(4): 100603, 2022 04 19.
Article in English | MEDLINE | ID: covidwho-2004611

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic highlights the importance of determining the breadth and durability of humoral immunity to SARS-CoV-2 mRNA vaccination. Herein, we characterize the humoral response in 27 naive and 40 recovered vaccinees. SARS-CoV-2-specific antibody and memory B cell (MBC) responses are durable up to 6 months, although antibody half-lives are shorter for naive recipients. The magnitude of the humoral responses to vaccination strongly correlates with responses to initial SARS-CoV-2 infection. Neutralization titers are lower against SARS-CoV-2 variants in both recovered and naive vaccinees, with titers more reduced in naive recipients. While the receptor-binding domain (RBD) is the main neutralizing target of circulating antibodies, Moderna-vaccinated naives show a lesser reliance on RBDs, with >25% neutralization remaining after depletion of RBD-binding antibodies. Overall, we observe that vaccination induces higher peak titers and improves durability in recovered compared with naive vaccinees. These findings have broad implications for current vaccine strategies deployed against the SARS-CoV-2 pandemic.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccination
2.
Microbiol Spectr ; 9(2): e0045821, 2021 10 31.
Article in English | MEDLINE | ID: covidwho-1398599

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for a global pandemic with over 152 million cases and 3.19 million deaths reported by early May 2021. Understanding the serological response to SARS-CoV-2 is critical to determining the burden of infection and disease (coronavirus disease 2019 [COVID-19]) and transmission dynamics. We developed a capture IgM assay because it should have better sensitivity and specificity than the commonly used indirect assay. Here, we report the development and performance of a capture IgM enzyme-linked immunosorbent assay (ELISA) and a companion indirect IgG ELISA for the spike (S) and nucleocapsid (N) proteins and the receptor-binding domain (RBD) of S. We found that among the IgM ELISAs, the S ELISA was positive in 76% of 55 serum samples from SARS-CoV-2 PCR-positive patients, the RBD ELISA was positive in 55% of samples, and the N ELISA was positive in 15% of samples. The companion indirect IgG ELISAs were positive for S in 89% of the 55 serum samples, RBD in 78%, and N in 85%. While the specificities for IgM RBD, S, and N ELISAs and IgG S and RBD ELISAs were 97% to 100%, the specificity of the N IgG ELISA was lower (89%). RBD-specific IgM antibodies became undetectable by 3 to 6 months, and S IgM reached low levels at 6 months. The corresponding IgG S, RBD, and N antibodies persisted with some decreases in levels over this time period. These capture IgM ELISAs and the companion indirect IgG ELISAs should enhance serologic studies of SARS-CoV-2 infections. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has inflicted tremendous loss of lives, overwhelmed health care systems, and disrupted all aspects of life worldwide since its emergence in Wuhan, China, in December 2019. Detecting current and past infection by PCR or serology is important to understanding and controlling SARS-CoV-2. With increasing prevalence of past infection or vaccination, IgG antibodies are less helpful in diagnosing a current infection. IgM antibodies indicate a more recent infection and can supplement PCR diagnosis. We report an alternative method, capture IgM, to detect serum IgM antibodies, which should be more sensitive and specific than most currently used methods. We describe this capture IgM assay and a companion indirect IgG assay for the SARS-CoV-2 spike (S), nucleocapsid (N), and receptor-binding domain (RBD) proteins. These assays can add value to diagnostic and serologic studies of coronavirus disease 2019 (COVID-19).


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin M/blood , SARS-CoV-2/immunology , COVID-19/therapy , Coronavirus Nucleocapsid Proteins/immunology , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunization, Passive , Immunoglobulin G/blood , Phosphoproteins/immunology , Sensitivity and Specificity , Serologic Tests/methods , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
4.
Cell Rep Med ; 2(7): 100354, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1294297

ABSTRACT

Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to 8 months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19/immunology , Immunologic Memory , Spike Glycoprotein, Coronavirus/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Longitudinal Studies , Male , Memory B Cells , Memory T Cells , Middle Aged , Young Adult
5.
Virology ; 559: 1-9, 2021 07.
Article in English | MEDLINE | ID: covidwho-1142294

ABSTRACT

Since the COVID-19 pandemic, functional non-neutralizing antibody responses to SARS-CoV-2, including antibody-dependent cell-mediated cytotoxicity (ADCC), are poorly understood. We developed an ADCC assay utilizing a stably transfected, dual-reporter target cell line with inducible expression of a SARS-CoV-2 spike protein on the cell surface. Using this assay, we analyzed 61 convalescent serum samples from adults with PCR-confirmed COVID-19 and 15 samples from healthy uninfected controls. We found that 56 of 61 convalescent serum samples induced ADCC killing of SARS-CoV-2 S target cells, whereas none of the 15 healthy controls had detectable ADCC. We then found a modest decline in ADCC titer over a median 3-month follow-up in 21 patients who had serial samples available for analysis. We confirmed that the antibody-dependent target cell lysis was mediated primarily via the NK FcγRIIIa receptor (CD16). This ADCC assay had high sensitivity and specificity for detecting serologic immune responses to SARS-CoV-2.


Subject(s)
Antibodies, Viral/immunology , Antibody-Dependent Cell Cytotoxicity , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , COVID-19/immunology , Cell Line , Cytotoxicity Tests, Immunologic , Female , Humans , Killer Cells, Natural/immunology , Kinetics , Male , Middle Aged , Receptors, IgG/immunology , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL